您现在的位置是:网站首页> 编程资料编程资料

构建可视化 web的 Python 神器streamlit_python_

2023-05-26 353人已围观

简介 构建可视化 web的 Python 神器streamlit_python_

前言:

今天要介绍这个神器,可以说是  pywebio  的 Plus  + Pro  + Max  版,原谅我的词穷,但它真的非常的强~ 
正常在学习一个新框架之前, 肯定要先调研下这个框架究竟能做些什么事吧?

但对于 streamlit 来说,请你相信我,这是一个你可以无脑去学习的框架,我之所以这么说,是因为我相信终有一天,你一定能用得上它。

Streamlit 是一个用于机器学习、数据可视化的 Python 框架,它能几行代码就构建出一个精美的在线 app 应用。

它能做什么,取决于你想干什么?

streamlit 的功能强大,要学习的函数虽然多,但非常容易上手,学习成本却远比 前端+Flask 来得低得低。接下来,我会一一介绍。

1. 如何安装?

和安装其他包一样,安装 streamlit 非常简单,一条命令即可

➜ pip install streamlit 

考虑到 streamlit 会附带安装比较多的工具依赖包,为了不污染当前的主要环境,我使用 venv 新建一个虚拟环境。

➜ python3 -m venv .

然后使用如下命令进入该虚拟环境

➜ source ./venv/bin/activate

接下来,再安装 streamlit ,命令在上边。

安装的包比较多(数了下竟然接近 92 个?),过程也会很久,需要点耐心

➜ pip list | wc -l       92

在安装过程中,可能会遇到一些问题,但也不一定,这取决于你的机器,如遇到问题请自行借助搜索引擎解决。

2. 入门示例

Streamlit 提供了一些入门示例,执行如下命令即可

➜ streamlit hello

执行后 streamlit 会自动打开浏览器加载一个本地页面 http://localhost:8501/

这里面有很多的 demo,你可以看一下,这些 Demo 还有对应的配套代码

这些代码直接拷贝保存,就可以在本地直接通过如下命令直接运行

➜ streamlit run st-demo.py

2. Markdown 文本

导入 streamlit 后,就可以直接使用 st.markdown() 初始化,调用不同的方法,就可以往文档对象中填入内容

  • st.title():文章大标题
  • st.header():一级标题
  • st.subheader():二级标题
  • st.text():文本
  • st.code():代码,同时可设置代码的语言,显示的时候会高亮
  • st.latex():latex 公式
  • st.caption():小字体文本

如下我自己写的一个小 Demo,供参考

import streamlit as st # markdown st.markdown('Streamlit Demo') # 设置网页标题 st.title('一个傻瓜式构建可视化 web的 Python 神器 -- streamlit') # 展示一级标题 st.header('1. 安装') st.text('和安装其他包一样,安装 streamlit 非常简单,一条命令即可') code1 = '''pip3 install streamlit''' st.code(code1, language='bash') # 展示一级标题 st.header('2. 使用') # 展示二级标题 st.subheader('2.1 生成 Markdown 文档') # 纯文本 st.text('导入 streamlit 后,就可以直接使用 st.markdown() 初始化') # 展示代码,有高亮效果 code2 = '''import streamlit as st st.markdown('Streamlit Demo')''' st.code(code2, language='python')

Streamlit 运行的方式 与普通的脚本 有所不同,应该使用 streamlit run st-demo.py

image.png

运行后就会自动打开浏览器加载这个页面,如果没有自动打开,也可以手动拷贝上图中的链接打开访问。

是不是有点那个味了?就这,还只是开胃菜~

3. 数据图表支持

3.1 图表组件

关于数据的展示,streamlit 由两个组件进行支持

  • table:普通的表格,用于静态数据的展示
  • dataframe:高级的表格,可以进行数据的操作,比如排序

Table 的示例:

df = pd.DataFrame(     np.random.randn(10, 5),     columns=('第%d列' % (i+1) for i in range(5)) ) st.table(df)

效果如下:

Datafram 的示例:

df = pd.DataFrame(     np.random.randn(10, 5),     columns=('第%d列' % (i+1) for i in range(5)) ) st.dataframe(df.style.highlight_max(axis=0))

效果如下,可以看到在图示外,有个向下的小箭头,你点一下,就会进行排序,除此之外,你还能看到我对最大值进行了高亮显示,原因是我传入的参数是 df.style.highlight_max(axis=0)

其实还有 n 多种样式,比如:

  • highlight_null:空值高亮
  • highlight_min:最小值高亮
  • highlight_max:最大值高亮
  • highlight_between:某区间内的值高亮
  • highlight_quantile:暂没用过

这些你都可以在源代码中找到示例

3.2 监控组件

在采集到一些监控数据后,若你需要做一个监控面板, streamlit 也为你提供的 metric 组件

如下代码创建 三个指标,并且填入对应的数据

col1, col2, col3 = st.columns(3) col1.metric("Temperature", "70 °F", "1.2 °F") col2.metric("Wind", "9 mph", "-8%") col3.metric("Humidity", "86%", "4%")

刷新页面,就能看到下面的效果:

3.3 原生图表组件

Streamlit 原生支持多种图表:

  • st.line_chart:折线图
  • st.area_chart:面积图
  • st.bar_chart:柱状图
  • st.map:地图

下面一一展示

折线图

chart_data = pd.DataFrame(     np.random.randn(20, 3),     columns=['a', 'b', 'c']) st.line_chart(chart_data)

面积图

chart_data = pd.DataFrame(     np.random.randn(20, 3),     columns = ['a', 'b', 'c']) st.area_chart(chart_data)

柱状图

chart_data = pd.DataFrame(     np.random.randn(50, 3),     columns = ["a", "b", "c"]) st.bar_chart(chart_data)

地图

df = pd.DataFrame(     np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],     columns=['lat', 'lon'] ) st.map(df)

3.4 外部图表组件

Streamlit 的一些原生图表组件,虽然做到了傻瓜式,但仅能输入数据、高度和宽度,如果你想更漂亮的图表,就像 matplotlib.pyplot、Altair、vega-lite、Plotly、Bokeh、PyDeck、Graphviz 那样,streamlit 也提供了支持:

  • st.pyplot
  • st.bokeh_chart
  • st.altair_chart
  • st.altair_chart
  • st.vega_lite_chart
  • st.plotly_chart
  • st.pydeck_chart
  • st.graphviz_chart

对于这部分,熟悉的同学自行尝试了,这里不再演示。

4. 用户操作支持

前面 streamlit 都只是展示文本和数据,如果仅是如此,那 streamlit 也就 just so so

对于那些不会前端,并且平时有需要写一些简单的页面的人说,能写一些交互界面才是硬需求。

庆幸的是,你平时在网页上、app 上能看到的交互组件,Streamlit 几乎都能支持。。

  • button:按钮
  • download_button:文件下载
  • file_uploader:文件上传
  • checkbox:复选框
  • radio:单选框
  • selectbox:下拉单选框
  • multiselect:下拉多选框
  • slider:滑动条
  • select_slider:选择条
  • text_input:文本输入框
  • text_area:文本展示框
  • number_input:数字输入框,支持加减按钮
  • date_input:日期选择框
  • time_input:时间选择框
  • color_picker:颜色选择器

这些内容非常多,也比较简单,一个一个举例也没必要,大家直接去看 streamlit 源码里的注释即可。

5. 多媒体组件

想要在页面上播放图片、音频和视频,可以使用 streamlit 的这三个组件:

  • st.image
  • st.audio
  • st.video

6. 状态组件

状态组件用来向用户展示当前程序的运行状态,包括:

  • progress:进度条,如游戏加载进度
  • spinner:等待提示
  • balloons:页面底部飘气球,表示祝贺
  • error:显示错误信息
  • warning:显示报警信息
  • info:显示常规信息
  • success:显示成功信息
  • exception:显示异常信息(代码错误栈)

效果如下:

7. 页面布局

Streamlit 是自上而下渲染的,组件在页面上的排列顺序与代码的执行顺序一致。

一个精美的 web app ,只有上下单栏式的布局肯定是不够的。

实际上 streamlit 还提供了多种多样的布局:

st.sidebar:侧边栏

侧边栏可以做一些用户操作控件

  • st.columns:列容器,处在同一个 columns 内组件,按照从左至右顺序展示
  • st.expander:隐藏信息,点击后可展开展示详细内容,如:展示更多
  • st.container:包含多组件的容器
  • st.empty:包含单组件的容器
  • 提示: 本文由整理自网络,如有侵权请联系本站删除!
    本站声明:
    1、本站所有资源均来源于互联网,不保证100%完整、不提供任何技术支持;
    2、本站所发布的文章以及附件仅限用于学习和研究目的;不得将用于商业或者非法用途;否则由此产生的法律后果,本站概不负责!

-六神源码网